

Material Safety Data Sheet

Nickel Sulphate

SUPPLIER DETAILS					
Supplier Name:	Palabora Copper (Pty) Limited	Emergency Telepho Number: E-Mail Address:	one +27 (0)15 780 266 palabora.msds@p	6 alabora.co.za	
Address:	PO Box 65 1 Copper Road Phalaborwa, 1390	Telephone Number: URL / WebPages:	: +27 (0)15 780 228 http://www.palab	1 ora.com/	
MSDS Custodian:	South Africa Manager: Environment & SHEQ MS				
1. PRODUCT IDENTIFICATION					
Chemical Names and Synonyms:		UN Number: 3077			
Nickel (II) Sulphate Hexahydrate, NiSO ₄ .6H ₂ O					
CAS Number: 10101-97-0	<u>) </u>	NIOSH Number: NA			
2. COMPOSITION	2. COMPOSITION				
Nickel (II) Sulphate hexahy	drate - 95%				
Molar Mass: 26	<i>i</i> 2.86				
Molecular Formula: Ni	SO4.6H2O				
EC-Index Number: 02	<u> 28-009-00-5</u>				
EC-Number: 23	j2-104-9				
3. HAZARDOUS IDENTIFICATION					
HAZARD CLASSIFICATION & LABELING: Human Health and Environment					
CLASSI		TION		M-Factor	
	Hazard Class	Hazard Class & Category Hazard Statement Code			

	CLASSIFICATION	IN-I actor		
ENDFOINT	Hazard Class & Category	Hazard Statement Code		
	Code			
Dermal Irritation/Skin Corrosion (GHS)	Skin Irrit. 2	H315	M = 1	
Dermal Sensitization	Skin Sens. 1	H317		
Mutagenicity	Muta. 2	H341		
Acute Oral Toxicity	Acute Tox. 4	H302		
Acute Inhalation Toxicity	Acute Tox. 4	H332		
Chronic Toxicity/STOT-RE	STOT RE 1	H372		
(inhalation)				
Reproductive Toxicity	Repr. 1B	H360D		
Carcinogenicity (inhalation)	Carc. 1A	H350i		
Respiratory Sensitization	Resp. Sens. 1	H334		
Acute Aquatic Environment Aquatic Acute 1		H400		
Chronic Aquatic Environment Aquatic Chronic 1		H410		

4. FIRST AID MEASURES

Inhalation - Fresh air. Seek medical attention

Skin Contact - Remove contaminated clothing including shoes. Wash affected area with plenty of soap and water for at least 20 minutes.

Eye Contact - Rinse out with plenty of water with the eyelid held wide open. Seek medical attention.

Ingestion - Large quantities of water should be drunk. Seek medical attention.

Wounds - Cleanse thoroughly to remove any nickel sulphate particles.

5. FIRE FIGHTING MEASURES

Special Risks - Non-combustible. Development of hazardous combustion gases or vapours possible in the event of fire. The following may be present in the event of fire. Sulphur Oxides

Special Protective Equipment for Fire Fighting - Do not stay in dangerous zone without suitable chemical protection clothing and self-contained breathing apparatus.

Other Information - Contain escaping vapours with water. Prevent fire-fighting water from entering surface water or groundwater

Suitable Extinguishing Media - Adapt to materials stored in the immediate vicinity.

6. ACCIDENTAL RELEASE MEASURES

Person-related precautionary measures:

Avoid substance contact.

Avoid generation of dusts.

Do not inhale dusts.

Environment protection measures: Do not allow to enter aquatic system.

Procedures for cleaning/absorption:

Pick up dry - Collect spills by sweeping or vacuuming with the vacuum exhaust passing through a high efficiency particulate arresting filter if exhaust is discharged into the work place. Avoid generation of dusts.

Dispose of spills in accordance with local regulations.

Clean up affected area.

7. HANDLING AND STORAGE

Keep in the container supplied and keep container closed when not in use. Wear appropriate protective clothing, including waterproof gloves and nationally approved respirators.

Follow local regulations regarding the storage of this material.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

The following <u>source</u> of information on Occupational Exposure Limits from Member States is the OSHA (European Agency for Safety and Health at work) website: <u>http://osha.europa.eu/en/topics/ds/oel/index.stm/members.stm</u> The following current national limit values for Nickel and its compounds (November 2010)

Area	Country	ntry Current OELs (mg Ni / m ³)				
		Soluble	Metallic	Nickel oxide and carbonate	Insoluble	Nickel Carbonyl (liquid) as Ni(CO)₄
Europe	Finland	0.1	1	0.1	0.1	0.007 (0.021 STEL) (both as Ni(CO) ₄)
	Norway	0.05	0.05	-	0.05	0.007 (as Ni(CO) ₄)
	UK	0.1 (MEL [#])	0.5 (MEL [#])	-	0.5	0.24 (STEL, as Ni)
	France	0.1	1 (VME)*	1	1	0.12 (as Ni)
	Germany					
		No legally bindin	ig OEL currently	y in place		
	Belaium	0.1	1	-	0.2**	0.12 (as Ni)
	Denmark	0.01	0.05	-	0.05	0.007 (as Ni(CO) ₄)
	Italv	0. 1	1	-	1	0.12 (as Ni)
on-	USA (OSHA)	1	1	-	1	0.007 (as Ni(CO) ₄)
urope	USA - ACGIH (TLV) Non- enforceable	0.1#	1.5#	-	0.2**#	0.12 (as Ni) and 0.35 as Ni(CO)4
	Canada - most iurisdictions	0.1	1.5	-	0.2**#	0.35 (as Ni(CO) ₄)
	Canada - Ontario	0.1	1	-	0.2**#	0.35 (as Ni(CO) ₄)
	Canada - BC	0.05	0.05	-	0.05	0.007 (as Ni(CO) ₄)
	Canada - Qc, NT, NU, YT	0.1	1	-	1	0.35 (as Ni(CO) ₄)
	Japan	0.1	-	0.1	0.1	0.007 (as Ni(CO) ₄)
	Australia	0.1	1	-	1\$	0.12 (as Ni)
	South Africa	0.1	0.5	-	0.5**	0.24 (STEL, as Ni)

*VME = Valeur Moyenne d'Exposition. The value of 1 mg/rn³ applies to nickel carbonate, dihydroxide, subsulfide, monoxide, sulphide trioxide and for other chemical forms not otherwise specified, such as "insoluble nickel compounds" and nickel sulfide roasting fume and dust.

** For nickel subsulfide the value is 0.1 mg Ni/m³ as inhalable.

Inhalable

^{\$} Nickel sulphides roasting fumes only

- MEL Maximum Exposure Limit
- STEL Short term exposure level

OEL Occupational exposure limit

TWA Time-weighted average exposure

TLV Threshold Limit Value

Personal Protective Equipment:

Respiratory protection - Required when dust is generated Eye Protection - Required Hand Protection - Required

Industrial Hygiene:

Protective clothing should be selected specifically for the working place, depending on the concentration and quantity of the hazardous substances handled. Avoid repeated skin and eye contact. Wear goggles or face shield. Wear suitable protective clothing and waterproof gloves. Wash skin thoroughly after handling and before eating, drinking or smoking. Launder clothing and gloves as needed. Application of skin-protective barrier cream is recommended.

9. PHYSICAL AND CHEMICAL PROPERTIES

Form: Crystals				
Colour: Green				
Odour: Odourless				
Formula: NiSO4.6H2O				
pH value @ 100g/l H2O, 20 deg C	4.3 - 4.7			
Melting temperature	53 deg C (loss of water of crystallisation on heating) Boiling temperature			
not applicable				
Ignition temperature	not applicable			
Flash point	not applicable			
Explosion limit	Non-explosive			
Relative vapour density	not applicable			
Relative density @ 20 deg C	2.07 g/cm ³			
Bulk Density	± 1000 kg/m3			
Solubility in				
water @ 20 deg C	625 g/l			
water @ 100 deg C	3407 g/l			
Thermal decomposition	> 700 deg C			
10. STABILITY AND REACTIVITY				
Conditions to be avoided: Strong Hea	ating			
Substances to be avoided: Strong Acids				
Hazardous decomposition products: In the event of fire - toxic vapours (Sulphur Oxides)				

Further Information: Releasing water of crystallization - when heated.

11. TOXICOLOGICAL INFORMATION

Toxicity endpoints	Description of effects
Absorption	ORAL = 30% from food during fasting; 5% from absorption of nickel from food, soil, dust and
	from water consumed with food [In vivo rat, human study and modeling of human data]
	(Ishimatsu et al., 1995; Sunderman et al., 1989; Nielsen et al., 1999; Diamond et al., 1998;
	EURA, 2008-2009)
	DERMAL = 2% [<i>In vivo</i> human skin stripping and <i>in vitro</i> human stratum corneum] (Hostynek
	et al., 2001; Tanojo et al., 2001; EURA, 2008-2009)
	INHALATION = 100% (aerodynamic diameter below 5 μ m = respirable fraction), negligible
	(aerodynamic diameters >5 μ m = non-respirable fraction) [Animal studies and read across from nickel ableride rat in vive introtreabeel instillation studies] (Medinaky et al. 1097; Benson et al.
	1005: Carvalbo and Ziemer 1082: English et al. 1081: Clary 1075: ELIRA 2008-2000)
Acute toxicity	$OPAI : I D_{com}$ 361.0 mg NiSO ₄ 6H ₂ O/kg bw Classified as Category 4 [OECD Guideline 425]
Acute toxicity	(FPSI 2009a: FDRI 1983)
	DERMAL No studies have been found on acute toxicity by the dermal route but dermal
	absorption is low so toxicity is not expected.
	INHALATION: LC ₅₀ = 2.48 mg NiSO ₄ ·6H ₂ O/L. Classified as Category 4 [OECD Guideline 403
	study] (EPSL, 2009b)
Skin	Nickel sulphate is classified as Category 2 for skin irritaton with a 20% concentration limit.
corrosion/irritation	[Human patch testing] (Frosch and Kligman, 1976; Seidenari et al., 1996)
Serious eye	Nickel sulphate is not an eye irritant. [OECD Guideline 405 study] (SLI, 1999)
damage/irritation	
Respiratory or skin	DERMAL: Nickel sulphate is a dermal sensitizer classified as Category 1. [Guinea Pig
sensitisation	Maximization Test sudies] (Rohold et al., 1991; FDRL, 1986; Lammintausta et al., 1985;
	Nielsen et al., 1992)
	RESPIRATORY: Nickel sulphate is a respiratory sensitizer classified as Category 1. [Weight of a vidence from human accorresponded] (Plack and Young, 1082; Mala et al., 1082; Mala et al
	1085: McCoppell et al. 1073: Novey et al. 1083)
Germ cell	Nickel sulphate is mutagenic and is classified Category 2. [In vivo mutagenicity testing and in
Mutagenicity	vivo testing weight of evidence] (Larramendy et al., 1981; Oller and Erexson, 2007)
Carcinogenicity	ORAL: Nickel sulphate is not carcinogenic by the oral route of exposure. [OECD Guideline 451
	and EPA OPPTS 870.4200 study] (Heim et al., 2007)
	DERMAL: Not relevant since negligible amount of absorption by dermal exposure.
	INHALATION: Nickel sulphate in currently classified as Category 1A for inhalation exposure.
	[Human epidemiological studies and 2-year rat inhalation OECD Guideline 453] (Doll et al.,
	1990; Grimsrud et al., 2002; Antilla et al., 1998; Roberts et al., 1989; Andersen et al., 1996;
	Pang et al., 1996; NTP, 1996)
Reproductive toxicity	Nickel sulphate is a Category 1B reproductive toxicant. [OECD Guideline 416- 2 generation
	study] (SLI, 2000)
STOT-single	Available data do not indicate potential for single target organ toxicity. (References are
EXPOSURE	ORAL: Look of tovicity demonstrated in evoluble studies. (References are included in other
toxicity	endpoint summaries)
UNICITY	DERMAL: Lack of toxicity from dermal exposure since dermal absorption is pedigible
	INHALATION: Classified as Category 1 for inhalation exposure due to lung effects NOAFC =
	0.027 mg Ni/m ³ [Data from 2-year rat inhalation OECD Guideline 453 study] (NTP. 1996)
Aspiration hazard	Not applicable.

12. ECOLOGICAL INFORMATION

Endpoints	Description of effects
Toxicity	Ecotoxicity Reference Values (ERVs) for nickel substances:
	 Acute = 120 μg Ni/L (pH 6), 68 μg Ni/L (pH 8)
	 Chronic = 2.4 μg Ni/L
	Short-term toxicity to aquatic invertebrates:
	 Invertebrates 48h LC₅₀ (immobilization) (freshwater): Range from 0.013 mg Ni/L
	[Ceriodaphnia dubia] (Schubauer-Berigan <i>et al.</i> , 1993) to 4970 mg Ni/L [<i>Daphnia</i>
	<i>magna</i>] (Chapman <i>et al.</i> , 1980) (immobilization).
	 Invertebrates 48h LC₅₀ mortality (marine): Range from 0.23 mg/L [Haliotis refescens]
	(Hunt et al., 2002) to 415 mg/L (<i>Penaeus duorarum</i>] (Bentley et al., 1975).
	Short-term toxicity to fish:
	 Fish 96 hour (freshwater): Range from 0.23 mg Ni/L [<i>Pimephales promelas</i>] (Hoang et al., 2004) to 320 mg Ni/L [<i>Brachydanio rerio</i>] (Janssen Pharmaceutica, 1993) (mortality).
	 Fish 96h LC₅₀ mortality values (marine): Range from 26.6 mg Ni/L [<i>Atherinops affinis</i>] (Hunt <i>et al.</i>, 2002) to 350 mg Ni/L [<i>Fundulus heteroclitus</i>] (Eisler and Hennekey, 1977)
	Long-term toxicity to aquatic invertebrates:
	 Invertebrates population growth rate (15 species) (freshwater): Range of 1.4 µg/l
	[<i>Lymnaea stagnalis</i>] (growth) to 1379 µg/L [<i>Brachionus calyciflorus</i>] (Stubblefield and Van Genderen, 2007).
	 Invertebrates (9 species) (marine): Range from 22.5 µg Ni/L [Neanthes
	<i>arenaceodentata</i> reproduction] (Parametrix 2007b) to 335 μg Ni/L [<i>Strongylocentrotus purpuratus</i> development] (Parametrix 2007c).
	Long-term toxicity to fish:
	 Fish (3 species) (freshwater): Range of 40 µg Ni/L [<i>Brachydanio rerio</i> for hatchability] to 1548 µg Ni/L [<i>Oncorhynchus mykiss</i> for growth] (Deleebeeck <i>et al.</i>, 2007).
	 Fish EC₁₀ (2 species) (marine): Range from 3599 μg Ni/L [<i>Atherinops affinis</i> growth] (Hunt <i>et al.</i>, 2002) to 20760 μg Ni/L [<i>Cyprinodon variegatus</i> growth] (Golder Associates, 2007)
	Toxicity to aquatic algae and cyanobacteria:
	• Algae growth rate (9 values) (freshwater): Range of 12.3 ug Ni/L [Scenedesmus
	accumulates] (Deleebeeck <i>et al.</i> , 2006) to 51.8 μg Ni/L [<i>Coelastrum microporum</i>] (Deleebeeck <i>et al.</i> , 2006) (growth rate)
	 Algae growth (4 species) (marine): Range from 97 µg Ni/L [Macrocystis pyrifera] (Golder, 2007) to 17891 µg Ni/L [Dunaliella tertiolectal] (Parametrix 2007a).
	Toxicity to aquatic plants other than algae:
	 Higher aquatic plants growth inhibition (freshwater): Range of 8.2 µg Ni/L [Lemna gibba] (Klain & Knuteson, 2003) and 80 µg Ni/L [Lemna minor] (Antunes, 2007)
	Toxicity to microorganisms:
	 Inhibition of Oxygen Consumption EC₅₀: 33 mg/L [Test for by Activated Sludge- ISO 8192] (Cokgor et al.,2007)
	Toxicity to other aguatic organisms:
	 Amphibians (3 species) (freshwater): Range of 84.5 µg Ni/L to 13,147 µg Ni/L [Xenopus laevis malformation] (Hopfer et al., 1991).
	Sediment toxicity:
	 Pending outcome of sediment testing program (conclusion i of EU Existing Substances Risk Assessment).
	Toxicity to soil macro-organisms:

	 Macroinvertebrates (acute): Range from 52 mg Ni/kg dw [<i>Lumbicis terrestris</i> mortality] (Furst <i>et al.</i>, 1993) to 2,500 mg Ni/kg dw [<i>Caenorhabditis elegans</i> mortality] (Boyd and Williams, 2003). Invertebrates (6 species) (chronic): Range from 36 mg Ni/kg [<i>Folsomia candidate</i> reproduction] to 1140 mg Ni/kg [<i>Eisenia fetida</i> reproduction] (Ghent University, 2005). Toxicity to terrestrial plants: Plants EC₅₀ (4 d) values (acute): Range from ≥54.5 mg/kg soil d.w. to ≤1928.2 mg/kg [<i>Hordeum vulgare</i> root elongation] (Thakali <i>et al.</i>, 2006). Plants (11 species) (chronic): Range from 10 mg Ni/kg [<i>Spinacea oleracea</i> total yield] (Willaert & Verloo, 1988) to 1127 mg Ni/kg [<i>Hordeum vulgare</i> root yield] (Rothamsted Research, 2005). Toxicity to soil micro-organisms: Microbial processes (12 processes) (chronic): Range from 28 mg Ni/kg [nitrification] (Smolders, 2000) to 2542 mg Ni/kg [respiration] (Doelman & Haanstra, 1984). Enzyme activity in soil (chronic): Range from 7.9 mg Ni/kg [dehydrogenase] (Welp, 1999) to 7084 mg Ni/kg [arylsulfatase activity] (Haanstra and Deolman, 1991). Microbial species growth (13 species) (chronic): Range from 13 mg Ni/kg [<i>Aspergillus</i>
	<i>clavatus</i>] to 530 mg Ni/kg for [<i>Trichoderma viride</i>] (Babich & Stotzky, 1982).
Persistence and degradability	Not applicable to inorganic substances. Information about the extent of nickel partitioning from the water column and transformation to less toxic or non-toxic nickel species is currently being evaluated in the context of the CLP criteria. This evaluation will be completed and available by 1 December 2012.
Bioaccumulative	Aquatic bioaccumulation
potential	 Freshwater aqueous: Range from 0.8 [<i>Oncorhynchus mykiss</i>, muscle w.w., 180 d flow-through] (Calamari et al., 1982) to 5613 [<i>Anacystis nidulans</i>, whole body d.w., 48h static] (Azeez and Banerjee, 1991) Freshwater sediment: 6150 [<i>Cerastoderma edule</i>, whole body w.w., field study] (Bryan and Hummerstone, 1977) Saltwater aqueous: Range from 3 (<i>C. margaritacea</i>, whole body w.w., field study] (Walting, 1983) to 26500 (<i>Cerastoderma edule</i> whole body d.w., 26 d semi-static] (Waegeneers and Smolders, 2003)
	 McGeer et al. (2003) aggregated whole fish tissue data published by Lind et al. (1978) and Blaylock and Frank (1979). A BCF of 270 was calculated from this linear relationship. Where <i>C. edule</i> was a relevant prey item for marine food chains, the value of 1631 (Boyden, 1975) was relevant. Terrestrial bioaccumulation (BSAF)
	 Range from 0.013 [lettuce, edible fraction] (DiSalvatore et al., 2009) to 1.86 [Allolobophora caligonosa, whole body d.w. (Plaggen soil)] (Ma, 1982)
	 All BAFs were pooled and log normally distributed, resulting in a BAF geometric mean from the cumulative frequency distribution of 0.30 (EURA, 2008-2009)
Mobility in soil	K _p - Soil : log K _{p soil} 2.86 [Aqua regia digestion- ISO 11466, 46 European soils](De Groot
Results of PBT and vPvB assessment	The PBT and vPvB criteria of Annex XIII to the Regulation does not apply to inorganic substances, such as nickel and inorganic nickel compounds.
Other adverse effects	Not applicable.

13. DISPOSAL CONSIDERATIONS

Product:

A distinction must be made between "wastes for recycling" and "wastes for disposal". Please contact the competent body (authority or waste disposal company) where you will obtain information on recycling or disposal.

Packaging:

Disposal to be in compliance with official regulations. Handle contaminated packaging in the same way as the substance itself. If not officially specified differently, non-contaminated packaging may be treated like household or recycled.

14. TRANSPORT INFORMATION

Land transport - Transport according to SABS code of practice (0230, 0231,0232)

Sea Transport - Ship in a closed container.

UN Proper Shipping Name - ENVIRONMENTALLY HAZARDOUS SUBSTANCE SOLID N.O.S. (Nickel Sulphate) Transport Hazard Class: 9

Packaging Group: III

The transport regulations are cited according to International Regulations, and may depend on Country-to-Country and volume to be transported.

15. REGULATORY INFORMATION

Labeling: Hazard pictograms:

Signal word: danger

LABELLING	HAZARDOUS STATEMENT CODE DESCRIPTION
Hazard Statement Code	
H302	H302 = Harmful if swallowed
H315	H315 = Causes skin irritation
H317	H317 = May cause an allergic skin reaction
H332	H332 =Harmful if inhaled
H334	H334 = May cause allergy or asthma symptoms or breathing difficulties if inhaled
H341	H341 = Suspected of causing genetic defects
H350i	H350i = May cause cancer via inhalation
H360D	H360D = May damage the unborn child
H372	H372 =Causes damage to lungs through prolonged or repeated exposure via inhalation
H410	H400 = Very toxic to aquatic life
	H410 =Very toxic to aquatic life with long lasting effects

EC No - 232-104-9

16. OTHER INFORMATION

References: Toxicity Summary Nickel Sulphate

References: Ecotoxicity Summary Ni and Ni compounds Refer to Annexure A of this MSDS – NOTE: Please don't print the list of references – save paper

DISCLAIMER

All information is given in good faith but without guarantee in respect of accuracy, and no responsibility is accepted for errors or omissions or the consequences thereof. It is the user's obligation to determine the conditions of safe use of the material, all risks of use of the product are therefore assumed by the user and we expressly disclaim all warranties of every kind and nature, including warranties of merchantability and fitness for a particular purpose in respect to the use or suitability of the product.

Annexure A: List of References

References: Toxicity Summary Nickel Sulphate

Andersen A, Engeland A, Berge SR, Norseth T. (1996). Exposure to nickel compounds and smoking in relation to incidence of lung and nasal cancer among nickel refinery workers. Occup Environ Med, 53:708-13.

Anttila A, Pukkala E, Aitio A, Rantanen T, Karjalainen S. (1998). Update of cancer incidence among workers at a copper/nickel smelter and nickel. Int Arch Occup Environ Health, 71:245-50.

Benson JM, Chang IY, Cheng YS, Hahn FF, Kennedy CH, Barr EB, Maples KR, Snipes MB (1995). Particle clearance and histopathology in lungs of F344/N rats and B6C3F1 mice inhaling nickel oxide or nickel sulfate. Fundam Appl Toxicol, **28:**232-244.

Block, G. T. and M. Yeung (1982). Asthma induced by nickel. JAMA, 247(11):1600-2. Carvalho SMM and Ziemer PL. (1982). Distribution and clearance of ⁶³Ni administered as ⁶³NiCl2 in the rat: Intratracheal study. Arch Environ Contam Toxicol, 11:245-248.

Clary JJ. (1975). Nickel chloride-induced metabolic changes in the rat and guinea pig. Toxicol Appl Pharmacol.; 31:55-65.

Diamond GL, Goodrum PE, Felter SP and Ruoff WL. (1998). Gastrointestinal absorption of metals. Drug Chem Toxicol, 21:223-251.

Doll et al. (International Committee on Nickel Carcinogenesis in Man (ICNCM)). (1990). Report of the International Committee on Nickel Carcinogenesis in Man. Scand J Work Environ Health, 16:1-84.

EPSL (2009a). Acute Oral Toxicity Up and Down Procedure in Rats. Testing laboratory: Eurofins Product Safety Laboratories (EPSL); Dayton, New Jersey, USA. Owner company: Nickel REACH Consortia Members. Study number: 28434. Report date: 2009-12-01.

EPSL (2009b). Acute Inhalation Toxicity Study in Rats - Defined LC50. Testing laboratory: Eurofins Product Safety Laboratories (EPSL); Dayton, New Jersey, USA. Owner company: Nickel REACH Consortia Members. Study number: 27562. Report date: 2009-09-29.

EURA (2008-2009). European Union Risk Assessment Report for Nickel Sulphate. Danish Environmental Protection Agency. Risk Assessment for Nickel Sulphate (CAS No. 7786-81-4)(EINECS No. 232-104-9) Prepared in Relation to Council Regulation (EEC) 793-93. <u>http://www.mst.dk/English/Chemicals/Substances and materials/Nickel/</u> English JC, Parker RD, Sharma RP and Oberg SG. (1981). Toxicokinetics of nickel in rats after intratracheal administration of a soluble and insoluble form. Am Ind Hyg Assoc J, 42:486-492.

FDRL (Food & Drug Research Laboratories, Inc.) (1983). Acute Oral LD50 Study in Rats (OECD). Test Article 83-0506 (Nickel Sulfate). Testing laboratory: Food & Drug Research Laboratories, Inc. (FDRL). Report no.: FDRL Study No. 7702A. Owner company: Study conducted for NiPERA, Inc.

FDRL (Food & Drug Research Laboratories, Inc.) (1986). Dermal Contact Sensitization Study of Nickel Sulfate, Nickel Oxide, CT-243-850, and CT-243-85F. Guinea Pig Maximization Test. Testing laboratory: Food & Drug Research Laboratories, Inc. (FDRL). Report no.: 8932. Owner company: NiPERA, Inc. Report date: 1986-04-07.

Frosch PJ, Kligman AM (1976): The chamber scarification test for irritancy. Contact Dermatitis, 2:314-324.

Grimsrud TK, Berge SR, Haldorsen T, Andersen A. (2002). Exposure to different forms of nickel and risk of lung cancer. Am J Epidemiol, 156:1123-1132.

Heim KE, Bates HK, Rush RE, and Oller AR (2007). Oral carcinogenicity study with nickel sulfate hexahydrate in Fischer 344 rats. Toxicology and Applied Pharmacology. 224:126–137.

Hostynek, J.J.; Dreher, F.; Nakada, T.; Schwindt, D.; Anigbogu, A.; Maibach, H.I. (2001) Human Stratum Corneum Adsorption of Nickel Salts: Investigation of Depth Profiles by Tape Stripping in vivo. Acta Derm Venereol **S212**: 11-18. Ishimatsu S, Kawamoto T, Matsuno K, Kodama Y. (1995). Distribution of various nickel compounds in rat organs after oral administration. Biol Trace Elements Res, 49 (1):43–52.

Lammintausta K, Kalimo K, and Jansen CT. (1985). Experimental nickel sensitization in the guinea pig: comparison of different protocols. Contact Dermatitis, 12:258-262.

Larramendy ML, Popescu NC, and DiPaolo JA (1981). Induction by inorganic metal salts of sister chromatid exchange

and aberrations in human and Syrian hamster cell strains. Environmental Mutagenesis, 2:597-606.

Malo JL, Cartier A, Doepner M, Nieboer E, Evans S, and Dolovich J. (1982). Occupational asthmatic caused by nickel sulfate. J Allergy Clin Immunology, 69:55-59.

Malo JL, Cartier A, Gagnon G, Evans S, and Dolovich J. (1985). Isolated late asthmatic reaction due to nickel sulphate without antibodies to nickel. Clinical Allergy, 15:95-99.

McConnell LH, Fink JN, Schlueter DP and Schmidt MG, Jr. (1973). Asthma caused by nickel sensitivity. Ann Intern Med, 78(6):888-90.

Medinsky MA, Benson JKM, Hobbs CH (1987). Lung clearance and disposition of ⁶³Ni in F344/N rats after intratracheal instillation of nickel sulphate solutions. Environ Res, **43**:168-178.

NTP (National Toxicology Program). (1996a). Technical Report on the toxicology and carcinogenesis studies of nickel sulfate hexahydrate (CAS NO. 10101-97-0) in F344/N rats and B6C3F1 mice (inhalation studies). National Institute of Health, Springfield, VA. Washington DC. pp. 376. Testing laboratory: NTP (National Toxicology Program). NTP Technical Report No. 454. Owner company: National Institute of Health, Springfield, VA. Washington DC. study number: NIH Publication No. 96-3370.

Nielsen, G. D., A. E. Rohold, and K. E. Andersen. (1992). Nickel contact sensitivity in the guinea pig. Acta Derm. Venereol. 72(1):45-48.

Nielsen GD, Søderberg U, Jørgensen PJ, Templeton DM, Rasmussen SN, Andersen KE, Grandjean P (1999). Absorption and retention of nickel from drinking water in relation to food intake and nickel sensitivity. Toxicol Appl Pharmacol, 154:67-75.

Novey, H. S., M. Habib and I. D. Wells (1983). "Asthma and IgE antibodies induced by chromium and nickel salts." J Allergy Clin Immunol, 72(4):407-12.

Oller A and Erexson G (2007). Lack of micronuclei formation in bone marrow of rats after repeated oral exposure to nickel sulfate hexahydrate. Mutation research, 626(1-2):102-110.

Pang D, Burges DC, Sorahan T. (1996). Mortality study of nickel platers with special reference to cancers of the stomach and lung, 1945-93. Occup Environ Med 53, 714-7.

Rohold AE, Nielsen GD, and Andersen KE (1991). Nickel sulphate-induced contact dermatitis in the guinea pig maximization test: A dose-response study. Contact Dermatitis, 24(1):35-39.

SLI (1999). A Primary Eye Irritation Study in Rabbits with Nickel Sulphate Hexahydrate. Testing laboratory: Springborn Laboratories, Inc. Report no.: SLI Study No. 3472.2. Owner company: Study conducted for NiPERA, Inc. Report date: 1999-12-23.

SLI (2000). An oral (gavage) two-generation reproduction toxicity study in Sprague-Dawley rats with nickel sulfate hexahydrate. Testing laboratory: Springborn Laboratories, Inc. Spencerville, Ohio, USA. Report no.: SLI Study No.

Seidenari, S., Belletti, B., Mantovani, L., and Pepe, P. (1996). Nickel sulfate 5-20% aq. Does not evoke irritation on the skin of non-nickel-sensitive subjects. Contact Dermatitis, 35:260-261.

Sorahan T. (2004). Mortality of Workers at a Plant Manufacturing Nickel Alloys, 1958-2000. Occupational Medicine, 54:28-34.

Sunderman FW, Jr, Hopfer SM, Sweeny KR, Marcus AH, Most BM, Creason J (1989). Nickel absorption and kinetics in human volunteers. Proc Soc Exp Biol Med, 191:5-11.

Tanojo H, Hostynek JJ, Mountford HS, and Maibach HI. (2001). *In vitro* permeation of nickel salts through human stratum corneum. Acta Derm Venereol, Suppl 212:19-23.

References: Ecotoxicity Summary Ni and Ni compounds

Antunes P. (Stantec Consulting Ltd) (2007). Testing the toxicity of Ni to Lemna minor in natural waters and standard test media. Testing laboratory: Stantec Consulting Ltd., Guelph, Ontario. Report no.: 162704389. Owner company: Nickel Producers Environmental Research Association (NiPERA), Inc.

Azeez PA and Banerjee DK. (1991). Nickel uptake and toxicity in cyanobacteria. Toxicological and Environmental Chemistry; 30:43-50.

Babich H and Stotzky G. (1982). Toxicity of nickel to microorganisms in soil: influence of some physiochemical characteristics. Environmental Pollution; (Series A) 29:303-315.

Bentley RE, Heitmuller T, Sleight III BH, and Parrish PR. (1975). Acute toxicity of nickel to bluegill (Lepomis macrochirus), rainbow trout (Salmo gairdneri), and pink shrimp (Penaeus duorarum). U. S. EPA, Criteria Branch (WH-585). Washington, D. C. Order No. WA-6-99-1414-B. Owner company: US EPA.

Blaylock BG and Frank ML. (1979). A comparison of the toxicity of nickel to the developing eggs and larvae of carp (Cyprinus carpio). Bull. Environ. Contam. Toxicol.; 21(4/5):604-611.

Boyd WA and Williams PJ (2003). Availability of metals to the nematode Caenophabditis elegans: Toxicity based on total concentrations in soil and extracted fractions. Env Toxicol and Chem, 22(5):1100-1106.

Boyden CR (1975). Distribution of some trace metals in Poole Harbor, Dorset. Marine Pollution Bulletin, 6(12):180-187. Bryan GW and Hummerstone LG (1977). Indicators of heavy metal contamination in the looe estuary (cornwall) with particular regard to silver and lead. J Mar Bio Ass UK, 57:75-92.

Calamari D, Gaggino GF, and Pacchetti G (1982). Toxicokinetics of low levels of Cd, Cr, Ni and their mixture in long-term treatment of Oncorhynchus mykiss. Chemosphere, 11(1):59-70.

Chapman GA, Ota S, and Recht F (1980). Effects of water hardness on the toxicity of metals to Daphnia magna. US EPA, Corvallis, OR. 17p. Owner company: US EPA.

Cokgor EU, Ozdemir S, Karahan O, Insel G, and Orhon D. (2007). Critical appraisal of respirometric methods for metal inhibition on activated sludge. Journal of Hazardous Materials, B139:332–339.

De Groot AC, Peijnenburg WJGM, van den Hoop MAGT, Ritsema R, and van Veen RPM. (1998). Heavy metals in Dutch field soils: an experimental and theoretical study on equilibrium partitioning. Testing laboratory: Laboratory of Ecotoxicology, National Institute of Public Health and the Environment. Report no.: 607220001. Owner company: Laboratory of Ecotoxicology, National Institute of Public Health and the Environment.

Deleebeeck NME, De Schamphelaere KAC, Muyssen BTA, De Laender F, and Janssen CR. (Ghent University) (2006). Ni toxicity to soft vs. hard water organisms: a comparison of sensitivity and bioavailability. Testing laboratory: Ghent University (UGent). Laboratory of Environmental Toxicology and Aquatic Ecology. Owner company: Nickel Producers Environmental Research Association (NiPERA), Inc.

Deleebeeck NME, Muyssen BTA, De Laender F, Janssen CR, and De Schamphelaere KAC. (2007). Comparison of nickel toxicity to Cladocerans in soft versus hard surface waters. Aquatic Toxicology; 84:223-235. Testing laboratory: Laboratory of Environmental Toxicology and Aquatic Ecology, Gent University, Jozef Plateaustraat 22, Gent, Belgium. DiSalvatore M, Carratu G, and Carafa AM. (2009). Assessment of heavy metals transfer from a moderately polluted soil into the edible parts of vegetables. Journal of Food, Agriculture, and Environment; 7(2):683-688.

Doelman P and Haanstra L. (1984). Short-term and long-term effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors. Plant and Soil. 79:317-327.

ECHA (European Chemicals Agency) (2011). Guidance on the Application of the CLP Criteria. ECHA Reference: ECHA-11-G-06-EN. Date: 04/2011.

EURA (European Union Risk Assessment) (2008-2009). Danish Environmental Protection Agency. Background document in support of individual risk assessment reports of nickel compounds. Danish Environmental Protection Agency. Prepared in Relation to Council Regulation (EEC) 793-93.

http://www.mst.dk/English/Chemicals/Substances_and_materials/Nickel/

Eisler R and Hennekey RJ. (1977). Acute toxicities of Cd⁺², Cr⁺⁶, Hg²⁺, Ni²⁺ and Zn²⁺ to estuarine macrofauna. Arch. Environ. Contam Toxicol, 6:315-323.

Ghent University/Euras (2005). NiPERA Research Project - Bioavailability and ageing of nickel in soils: Invertebrate toxicity testing. Testing laboratory: Ghent University (UGent) - Laboratory of Environmental Toxicology and Aquatic Ecology. Owner company: Nickel Producers Environmental Research Association (NiPERA), Inc. Report date: 2005-04-26.

Golder Associates Ltd. (2007). Laboratory report on: Toxicity of nickel to giant kelp (Macrocysts pyrifera) and sheepshead minnow (Cyprinodon vareigatas). Testing laboratory: Golder Associated Ltd. Report no.: 06-1424-008. Owner company: Nickel Producers Environmental Research Association (NiPERA), Inc. Report date: 2007-02-15. Haanstra L and Doelman P (1991). An ecological dose-response model approach to short- and long-term effects of heavy metals on arylsulphatase activity in soil. Biology and Fertility of Soils, 11:18-23.

Hoang, TC, Tomasso JR, and Klaine SJ. (2004). Influence of water quality and age on nickel toxicity to fathead minnows (Pimephales promelas). Environ. Toxicol. Chem.; 23(1):86-92.

Hopfer SM, Plowman MC, Sweeney KR, Bantle JA, and Sunderman Jr. FW. (1991). Teratogenicity of Ni+2 in Xenopus laevis, assayed by the FETAX procedure. Biological Trace Element Research, 29:203-216.

Hunt JW, Anderson BS, Phillips BM, Tjeerdema RS, Puckett HM, Stephenson M, Tucker DW, and Watson D. (2002). Acute and chronic toxicity of nickel to marine organisms: Implications for water quality criteria. Environmental Toxicology and Chemistry; 21(11):2423 - 2430.

Janssen Pharmaceutica (1993). The acute toxicity of nickel chloride in the zebra fish (Brachydanio rerio). Testing laboratory: Study conducted by Janssen Pharmaceutica N. V., Beerse, Belgium. Report no.: AFBr/0015. Owner company: Nickel Producers Environmental Research Association (NiPERA), Inc. Report date: 1993-01-19. Klaine SJ and Knuteson S. (Clemson Institute of Environmental Toxicology, Clemson University) (2003). Toxicity of nickel to duckweeds. Clemson Institute of Environmental Toxicology, Clemson University, Pendleton, South Carolina.

Testing laboratory: Clemson Institute of Environmental Toxicology, Clemson University. Owner company: Nickel Producers Environmental Research Association (NiPERA), Inc. Report date: 2003-12-31.

Lind D, Alto K, and Chatterton S. (1978b). Regional Copper-Nickel Study: Aquatic toxicology study. Minnesota Environmental Quality Board. pp. 1-53.

2019/01/06 2024/01/06 2024/05/22 Page 11 of 12 Ma W (1982). The influence of soil properties and worm-related factors on the concentration of heavy metals in earthworms. Pedobiologia, 24:109-119.

McGeer JC, Brix KV, Skeaff JM, DeForest DK, Brigham SI, Adams WJ, and Green AS. (2003). The inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ. Toxicol. Chem.; 22(5):1017-1037.

Parametrix, Inc. (2007a). Toxicity of nickel in natural waters to the marine algae (Dunaliella tertiolecta). Testing laboratory: Parametrix Environmental Research Laboratory, 33972 Texas Street SW, Albany, OR 97321. Report no.: 3831-425. Owner company: Nickel Producers Environmental Research Association (NiPERA), Inc. Report date: 2007-05-14.

Parametrix, Inc. (2007b). Toxicity of nickel to Neanthes arenaceodentata. Testing laboratory: Parametrix Environmental Research Laboratory, 33972 Texas Street SW, Albany, OR 97321. Report no.: 3831-457. Owner company: Nickel Producers Environmental Research Association (NiPERA), Inc. Report date: 2007-05-16.

Parametrix, Inc. (2007c). Toxicity of nickel to the sand dollar, Dendraster excentricus, and the purple sea urchin, Strongylocentrotus purpuratus. Testing laboratory: Northwestern Aquatic Sciences, 3814 Yaquina Bay Rd., Newport, OR 97365. Report no.: 760-8. Owner company: Nickel Producers Environmental Research Association (NiPERA), Inc. Report date: 2007-03-07.

Rothamsted Research (2005). NiPERA Research Project - Development of a predictive model of bioavailability and toxicity of nickel in soils: Plant toxicity. Testing laboratory: Rothamsted Research. Owner company: Nickel Producers Environmental Research Association (NiPERA), Inc. Report date: 2005-01-01.

Schubauer-Berigan MK, Dierkes JR, Monson PD, and Ankley GT. (1993). pH-Dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales Promelas, Hyalella azteca and Lumbriculus variegates. Environmental Toxicology and Chemistry, 12:1261-1266.

Smolders E. (2000). The effect of NiSO4.6H2O, elemental Ni and green NiO on nitrogen transformation in soil. Final Report. Reported in conjunction with the Nickel Producers Environmental Research Association (NiPERA), Inc. 22p. Testing laboratory: University of Leuven. Report date: 2000-01-01.

Stubblefield W and Van Genderen E (Parametrix, Inc) (2007). Validation of nickel biotic ligand model predictions for selected non-standard organisms. Testing laboratory: Parametrix, Inc. Owner company: Nickel Producers Environmental Research Association (NiPERA), Inc.

Thakali S, Allen HE, Di Toro DM, Ponizovsky AA, Rooney GP, Zhao FJ, and McGrath SP (2006). A terrestrial biotic ligand model. 1. development and application to cu and ni toxicities to barley root elongation in soils. Environ Sci Technol, 40:7085-7093.

Waegeneers N and Smolders E. (2003). Secondary poisoning of nickel to marine birds. EU Risk Assessment. Testing laboratory: Laboratory for soil and water management, KasteelPark Arenberg 20, B-3001 Heverlee-Belgium. Owner company: NiPERA, Inc.

Walting HR (1983). Accumulation of seven metals by Crassostrea gigas, Crassostrea margaritacea, Perna perna, and Choromytilus meridionalis. Bull. Environ Contam Toxicol, 30:317-322.

Welp G. (1999). Inhibitory effects of the total and water-soluble concentrations of nine different metals on the dehydrogenase activity of a loess soil. Biology and Fertility of Soils; 30:132-139.

Willaert G and Verloo M. (1988). Biological effects of nickel species and their determination in plant and soil. Plant and Soil; 107:285-292.